

Panoramica di progetto

Data di inizio: 1 Luglio 2020
Data di fine: 30 Giugno 2025

Le attività del progetto verranno svolte

Francia

Île de France

Rhône-Alpes

Italia

Emilia-Romagna

Marche

Lazio

Veneto

Piemonte

Spagna

Aragón

Budget totale: 3,032,094 Euro

Budget elegibile totale: 2,842,118 Euro

Contributo UE finanziato: 1,563,160 Euro (= 55% budget elegibile)

CC - Centro Ceramico

Consorzio

<u>CTMNC</u> - Centre Technique des Matériaux Naturels de Construction Università Politecnica delle Marche – <u>UNIVPM</u>

Edilians SAS - EDILIANS

Industrie Cotto Possagno S.p.A. – <u>ICP</u>

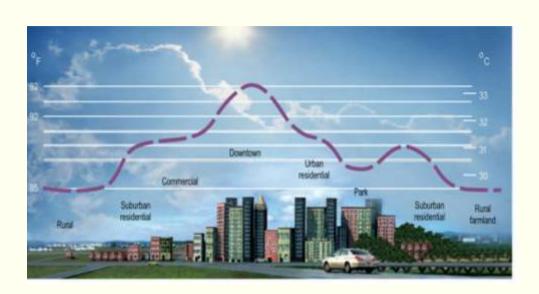
TERREAL - Terreal Italia S.r.l.

Azienda Casa Emilia Romagna di Reggio Emilia – <u>ACER</u>

<u>COMRE</u> - Comune di Reggio Emilia

CONFINDUSTRIA CERAMICA – CONFCER

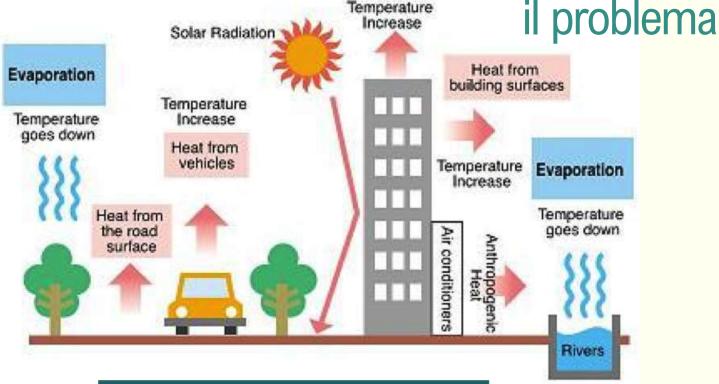
HYSPALIT - Asociación Española de Fabricantes de Ladrillos y Tejas de Arcilla Cocida


Surriscaldamento di edifici e città: il problema

Ondate di calore Sempre più intense e frequenti

Surriscaldamento di edifici e città: il problema

Isola di calore urbana
(Urban Heat Island, UHI)
fenomeno che determina
un microclima più caldo
all'interno delle aree
urbane cittadine, rispetto a
quella delle zone
periferiche e rurali
circostanti


Aumento di temperatura (medi 1-2°C, ma anche fino a 6°C) delle zone urbane rispetto alle zone rurali dovuto alle attività umane nonché alle abitazioni.

- temperature estive strade e tetti: 60-90°C;
- fenomeni temporaleschi: 10-15% in più rispetto a zone rurali;
- vento: diminuito del 20-30% rispetto agli ambienti rurali.

Surriscaldamento di edifici e città:

- Meno vegetazione
- Proprietà materiali urbani
- Geometria urbana
- Calore antropogenico
- Condizioni climatiche
- Localizzazione geografica

Effetto "isola di calore" e cambiamenti climatici

Le Isole di Calore Urbano **non** sono responsabili del surriscaldamento globale perché le città occupano solo una piccola frazione della superficie della Terra. I climi urbani sono un effetto climatico locale.

Il cambiamento climatico globale aggiungerà un ulteriore carico termico alle aree urbane, accentuando l'impatto delle Isole di Calore.

L'Agenzia Internazionale dell'Energia (IEA) ha stimato che la **domanda di energia per la climatizzazione** di edifici sarà più che triplicata entro il 2050.

La soluzione "classica"

COOL ROOFS e COOL PAVEMENTS

Nelle aree urbane, le **superfici del tetto** rappresentano generalmente circa il **20-40**% dell'area totale esposta alle radiazioni solari, e **l'area pavimentata** per il **29-44**% dell'area totale.

neralmente ni solari,

✓ Diffusione attuale dei cool roof e dei cool pavements nel mondo:

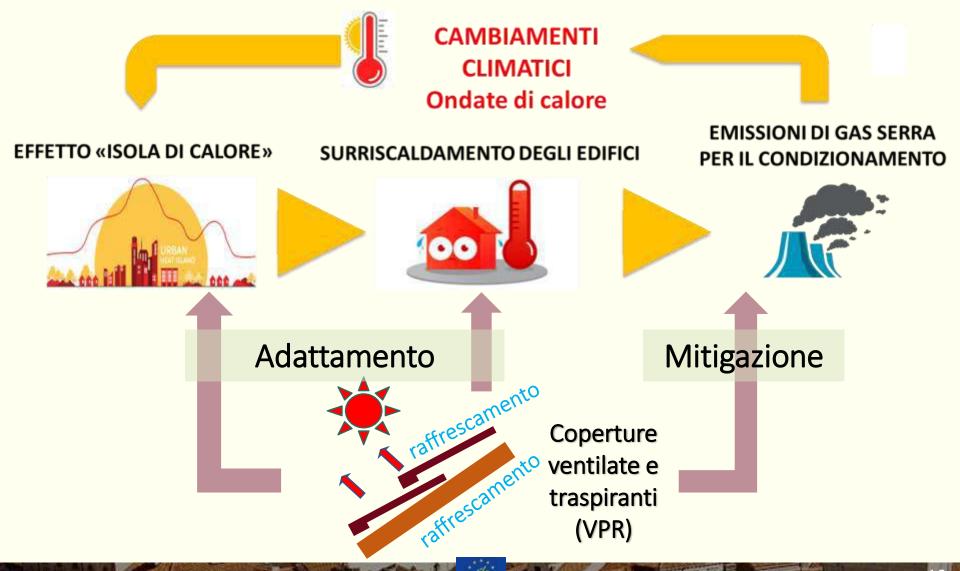
"100 Cool Cities" initiative needs your help

- Initial list of cities
 - NYC, Taipei, Tokyo, Osaka, Tallahassee, Rome, Milano, Athens, Sao Palo, Hyderabad, Delhi, Los Angeles, Toronto, Montreal, Philadelphia, Chicago, Singapore
- ✓ Combinazione di cool roofs e green roofs

La soluzione "SUPERHERO"

Diminuire la UHI e il surriscaldamento degli edifici e tenere sotto controllo l'emissione di CO₂ e di GHG

Ventilated
Permeable
Roof
(VPR)



LIFE SUPERHERO è un progetto di Buone pratiche: promuove l'uso di tetti ventilati e permeabili (VPR) come soluzioni sostenibili e a costo contenuto per il "raffrescamento passivo" degli edifici, incrementando il comfort degli occupanti durante le estati in città (adaptation) e diminuendo l'energia per il condizionamento degli edifici e l'emissione di GHG (mitigation).

Il beneficio di tetti in laterizio ventilati e «traspiranti» (VPR)

Obiettivi

Obiettivo di LIFE SUPERHERO: diffondere l'uso dei VPR come soluzione per adattamento e mitigazione dei cambiamenti climatici

Tetti costruiti con tegole progettate dal precedente progetto - HEROTILES-based roof (HBR), capaci di dimezzare l'energia di raffreddamento rispetto

ad altre soluzioni.

Consapevolezza dei progettisti e degli utilizzatori finali del potenziale di raffrescamento dei tetti ventilati ventilated permeable roofs (VPR) e dei benefit economici ed ambientali correlati

Strategia di LIFE SUPERHERO

Promozione di coperture ventilate e traspiranti (VPR)

Proposta di nuove Norme e Regolamenti

Proposta di Migliori Pratiche alle Municipalità

Sviluppo di un Software di valutazione dei benefici

Replicabilità Industriale Comunicazione

Attività

- C1 Proposte di norme e regolamentazioni: l'aggiornamento di norme e regolamenti esistenti sul tema del raffrescamento passivo, con la partecipazione assidua e puntuale a tutti i tavoli tecnici, politici e normativi opportunamente selezionati. Questo passaggio è necessario per poter superare le barriere politiche e legislative alla diffusione dei VPR.
- **C2** Buone pratiche per la realizzazione di tetti VPR: implementazione di una linea guida specifica per la realizzazione di un HBR, in caso di ristrutturazione della copertura di un edificio.
- **C3 Sviluppo di un software SUPERHERO:** supporto a consulenti, progettisti, pubbliche amministrazioni, al fine di selezionare le migliori soluzioni progettuali di copertura dal punto di vista economico e ambientale. Studio LCA del nuovo sistema copertura.
- **C4 Replicabilità e trasferibilità:** penetrazione del mercato della tecnologia di copertura HBR. Attività capillari di trasferimento tecnologico e buone pratiche di produzione garantiranno una facile ed economica conversione dei tradizionali processi di produzione delle tegole in quelli innovativi

SAIE- 16/10/2020

Norme e regolamenti: C1

Azione	Titolo
C1	Norme e regolamenti
C1.1	Metodo di prova normato per misurare la permeabilità all'aria
C1.2	Proposta di crediti specifici per buildings environmental rating
	systems (BRS) e inclusione dei benefici ambientali dei VPR nei
	building green public procurement (BGPP)
C1.3	Creazione di una <u>certificazione ambientale di prodotto</u> self-declared
	(Tipo II) secondo la ISO 14021:2016
C1.4	Implementazione delle <u>norme CEN</u> esistenti che tengano conto dei
	tetti ventilati e della loro permeabilità nei metodi di calcolo
	energetici di un edificio

SAIE-16/10/2020

Best practice per HBR: C2

Azione	Titolo
C2	Buone pratiche per realizzare tetti basati sulla tecnologia HEROTILE (HBR)
C2.1	Monitoraggio in edifici esistenti e ristrutturati con particolare attenzione alle temperature esterne delle coperture
C2.2	Progettazione e installazione di coperture HBR
C2.3	Piattaforma di condivisione dati per Climate-ADAPT

a

Attività di monitoraggio: C 2.1

Il sistema di monitoraggio verrà installato negli edifici attuali per determinare la performance termica del tetto (temperatura superficiale e flussi di calore), il comportamento degli occupanti ed le loro modalità di consumo energetico nelle condizioni attuali e in quelle nuove (prima e dopo l'installazione dei tetti ventilati e permeabili)

- 1) Per ogni stanza: *presenza umana* (1 sensore passivo ad infrarossi), apertura delle finestre (1 sensore a contatto per finestre/porte), accensione di *AC* (1 sensore di potenza elettrica in ingresso) electrical input power sensor), *regolazione tapparelle* (1 sensore a contatto contact; 1 telecamere termiche per tende da interni)
- 2) Per ogni edificio: 1 stazione meterologica
- **3)** Per ogni falda: 4 **sonde di temperatura superficiale** e **flussimetri di calore**; 1 *albedometro*.

Opensource software: C3

Azione	Titolo
С3	Sviluppo di un software SUPERHERO opensource & user- friendly
C3.1	Raccolta dati e implementazione del database per lo svliluppo del software
C3.2	Implementazione del <u>software code</u>
C3.3	<u>Verifica e dimostrazione della facilità d'uso del software per i</u> <u>comuni e</u> per gli stakeholders

SAIE- 16/10/2020

Replicabilità & trasferibilità: C4

Azione	Titolo
C4	Replicabilità & trasferibilità per i produttori di tegole
C4.1	Replicabilità del sistema con la stesura di una linea guida per i produttori di tegole e coppi e conseguente <u>trasferibilità</u> della soluzione
C4.2	Pianificazione aziendale per lo sfruttamento dei risultati
C4.3	Creazione di un marchio SUPERHERO

SAIE- 16/10/2020

Risultati attesi

- Ovviare alla mancanza di un quadro normativo consolidato prevalentemente incentrato sul risparmio energetico invernale.
- Migliorare il comfort termico di edifici e città contro il surriscaldamento. E' possibile dimostrare che il sistema VPR/HBR permette una riduzione del 25% delle temperature interne ed esterne del tetto.
- Diffondere l'applicazione di questa soluzione, che può portare ad una riduzione delle temperature massime nelle aree urbane di 1,5° C
- Ridurre il consumo di energia dovuto al condizionamento degli edifici e l'emissione di gas serra. HBR può far risparmiare sino al 50% di energia di raffreddamento e ridurre del 50% l'emissione di CO₂.
- Risparmiare in UE a fine progetto 126 Gwhe, corrispondenti a 44.112 tonnellate di CO₂ risparmiate.

