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Abstract. Climate change is causing an increasing cooling demand in residential 

buildings. Understanding the drivers behind occupants’ use of air conditioning is 

critical for accurate building energy performance analysis. However, occupant-

building interactions are highly variable and influenced by multidisciplinary fac-

tors, which cause critical uncertainty in behavioural modelling and energy use 

prediction. This study proposes the use of GLMMs to investigate if the inclusion 

of multi-domain factors (including physical, behavioural, and contextual do-

mains) in behavioural models increase the predictive performance, in comparison 

with single-domain models. Results from a monitoring campaign in three resi-

dential building apartments reveal a better performance of the multi-domain 

model in predicting occupant behaviour. Insights obtained from the multi-domain 

model then reveal that daily variability and apartment differences significantly 

influence air conditioning status. Occupancy, outdoor humidity, and CO₂ levels 

increase the likelihood of activation, while high air temperature differences be-

tween indoors and outdoors, high indoor humidity and window opening reduce 

it. 
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1 Introduction 

Occupants of residential buildings are responsible for a significant amount of energy 

consumption [1]. A special concern is devoted to cooling energy demand which is rap-

idly increasing in response to climate change and comfort expectations. Understanding 

the drivers of occupants’ interaction with air conditioning systems is crucial for accu-

rate building energy performance analysis [2]. It is well-known that the interaction be-

tween occupants and buildings is extremely variable and multidisciplinary (i.e., involv-

ing engineering, psychology, environmental sciences), with the complex interplay of 

environmental (representing the conditions of the indoor environment and its quality, 
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e.g. temperature, humidity, Co2 concentration), personal (such as age, gender, culture), 

and contextual (e.g. building typology and intended use, hour of the day also in refer-

ence to different seasons, effective interaction possibilities) variables [3]. This com-

plexity introduces uncertainty in behavioural pattern identification and consequent en-

ergy use prediction [2, 4]. In this sense, it becomes essentially to balance complexity 

(in respect of the type and number of considered variables), generalizability, and rep-

resentativeness of effective human-building interactions to provide reliable, “detailed 

enough” predictive models [2, 5]. In this context, the concept of adaptive thermal com-

fort, which acknowledges the dynamic relationship between occupants and their envi-

ronment, and their ability to adapt to varying indoor conditions over time [6] offers a 

valuable theoretical foundation. This concept supports the inclusion of behavioural and 

contextual variability in modelling approaches, further reinforcing the need for inte-

grated, multi-domain analyses in occupant behaviour research. Given this context, this 

study aimed to verify if and how the inclusion of multi-domain factors (which comprise 

physical, behavioural, and context variables) enhances the predictive performance of 

occupant behavioural models compared to single-domain models (only based on phys-

ical variables). In this way, this paper contributes to exploring how more complex ap-

proaches could include relevant parameters in respect to easy to apply (but too simpli-

fied) single-domain models, and thus define the first steps towards a more “conscious” 

adoption of data-driven techniques. This objective is pursued by the development of 

Generalized Linear Mixed Models (GLMMs) and subsequent testing on high-resolution 

sensor data collected from multiple residential apartment buildings during the summer 

season. Those models offer a balanced method between interpretability and flexibility 

to capture key predictors of occupant behaviour with high explanatory power consider-

ing behavioural diversity [7, 8]. These models are a complex extension of commonly 

used techniques, such as logistic regression, widely applied for thermostat adjustment 

predictions [2], by integrating hierarchical data structure into binary outcome variables, 

such as the on/off status of air conditioning systems. 

2 Literature review 

For decades, occupants’ behaviours have been modelled using a variety of approaches 

(e.g., deterministic and statistical methods, and artificial intelligence). The common 

thread is the need to properly capture the behavioural dynamics, to construct predictive 

models that integrate observed data with the most influencing drivers [2]. In literature, 

many behavioural models still rely on single variables at a time (i.e., indoor air temper-

ature, CO2 concentrations) [2, 5] (single-domain models), which limits their explana-

tory power. In addition, most studies were conducted in offices, while other building 

typologies, like residential buildings, are currently understudied [2, 9], especially in 

relation to air conditioning behaviour [10]. As a consequence, robust computational 

approaches integrating multi-domain factors (including physical, behavioural, and con-

textual domains) are required to identify the main influential factors of occupant be-

haviour and improve the ability to predict interaction with building systems. Nowadays, 

Machine Learning (ML) techniques are increasingly employed for advancing occupant 
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behaviour research, due to their high predictive accuracy and ability to capture non-

linear relationships [2]. However, the application of these data-driven approaches 

(which can be assumed as “black box” systems) should be supported by the identifica-

tion of key variables inputs, “to achieve a reliable prediction” [4]. In fact, the possibility 

of a lack of interpretability could be problematic in research fields where understanding 

the cause-effect relationship is essential, because it limits the ability of researchers to 

understand underlying behavioural mechanisms. Moreover, ML models require large 

datasets [8], which are often limited in residential buildings, due to privacy issues and 

data collection challenges over long periods, thus reducing generalizability. 

3 Method 

3.1 Residential building data collection 

A field campaign was carried out in three apartments (between 49-87 m2, 2 occupants 

each) within two multi-story social housing buildings in Reggio Emilia (Italy), which 

are the demonstrators of the LIFE SUPERHERO project [11]. Details about the build-

ing envelope and energy performance can be found in a previous research paper by the 

authors [12]. A physical monitoring campaign took place from July to September 2022 

before the buildings were retrofitted with the installation of external thermal insulation 

and the replacement of windows. A 10-minute timestamp was set to acquire the follow-

ing data: 

• Indoor environmental conditions are recorded by small wall-mounted sensors [13] 

in living rooms and bedrooms, considering air temperature (range: 0-50°C), rela-

tive humidity (range: 0-100%), CO2 concentration (up to 10,000 ppm), occupants’ 

presence (Boolean, 0/1 when the room is empty/occupied); 

• Windows status by using binary state sensors (Boolean, 0/1 when windows are 

closed/opened); 

• Air conditioning status recorded by an energy counter which data were converted 

in Boolean values 0/1 when AC is off/on depending on the consumed energy at 

each timestamp [14, 15]; 

• Outdoor environmental conditions are measured by a weather station located on 

the roof of one of the buildings [16], considering air temperature (range: -40 to 

65°C), relative humidity (range: 1-100%), solar radiation (range: 0-1800W/m2), 

wind speed (range: 1-322km/h), wind direction, precipitation (up to 1000 mm/h). 

3.2 GLMM development  

The hypothesis is that the inclusion of multi-domain factors, namely physical, behav-

ioural, and context variables, significantly enhances the predictive performance of oc-

cupant behavioural models. Thus, a Generalized Linear Mixed Model (GLMM) was 

computed using a binomial logit link function. The basic theory of the LMM is that the 

dependent variable response is the sum of fixed factors, which are the variables of in-

terest monitored during the study, and random factors that can influence the covariance 
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of the data. In this study, according to literature works [2, 5], we explored each of the 

records in the 10-minute timestamp dataset as single entries, thus not assuming an anal-

ysis into time series. The dependent variable was the air conditioning status, a binary 

indicator of whether the system is on or off at a given time in each monitored room. 

Indoor and outdoor environmental variables, windows opening status and contextual 

factors were considered independent variables used as fixed effects (Table 1).  

Table 1. Metrics considered for GLMMs generation. *continuous variables were normalized 

according to previous literature methods [2, 5]; ^predicted variable in Section 2.3 models. 

Fixed Effects Variable list Variable type 

Indoor Environment  Air Temperature Continuous* 

(IE) Relative Humidity Continuous* 

 CO2 concentration Continuous* 

Outdoor Environment  Air Temperature Continuous* 

(OE) Relative Humidity Continuous* 

 Solar radiation Continuous* 

 Wind speed Continuous* 

 Fair wind Binary [0,1] 

Occupant Behaviour  AC status^ Binary [0,1] 

(OB) Window status Binary [0,1] 

Context (C) Occupancy Binary [0,1] 

 Day Number [1 - 48] 

 Day Time [Morning, Afternoon, Evening, Night] 

  

A random intercept varying among apartments and rooms was included in the model 

concerning the nested random effects (i.e., specific rooms within specific apartments). 

This structure accounts for variability at the apartment level as well as within different 

zones of the same apartment. In addition, a random intercept for each day of the moni-

toring period was incorporated into the model to consider any potential autocorrelation 

in the data across the monitoring period. The general specification of the model was as 

follows: Dependent Variable ~ Fixed Effects Variables + (1 | Apartment/Room) + (1 | 

+ DayNumber) 

3.3 GLMM testing 

Two models of different complexity were developed by adding subsequent factors 

(Table 2), with model#1 being a single-domain model and model#2 a multi-domain 

model. The Variance Inflation Factor (VIF) was computed to diagnose collinearity be-

tween predictors in each model. Thus, these indices measure how much the variance of 

the regression coefficient estimate is inflated due to the correlation between that pre-

dictor and the others. To keep those scores lower than the threshold value equal to 5 
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[17], some predictors (Indoor Air Temperature and Outdoor Air Temperature) were 

combined by computing their difference value to deal with collinearity (ΔT). 

Table 2. Proposed models, predictors and domain 

Model Predictors Domains 

1  AC ~ IE + OE Single-domain: Physical (Thermal, Air Quality) 

2 AC ~ IE + OE + OB + C 
Multi-domain: Physical (Thermal, Air Quality), 

Behavioural, Context 

  

Then, the following performance metrics were computed and compared across the 

two models to select the best performing GLMM: 

• Akaike Information Criterion (AIC): lower values indicate better model fit; 

• Bayesian Information Criterion (BIC): similar to AIC, but balanced with model 

complexity to support model parsimony; 

• R2 Marginal and R2 Conditional to extract the proportion of variance explained 

by fixed effects and by both fixed and random effects, respectively [18] 

• ANOVA (model#1 vs model #2) to test whether adding multi-domain predictors 

significantly improves the model fit. P-values < 0.05 were considered signifi-

cant thus demonstrating that the inclusion of behavioural and context variables 

improves the predictive performance of the GLMM. 

4 Results 

The sample size dataset was composed of 56642 observations, collected in 7 rooms 

(i.e., 3 living rooms, 4 bedrooms), from July 29th and September 14th, 2022 (i.e., 48 

monitoring days). The statistical analysis was carried out using the statistical software 

R [19]. 

4.1 Raw data analysis 

Fig. 1 shows the analysis of AC activation frequency by apartment and time of day. In 

general, nighttime shows the highest frequency of activation (34% of the total), while 

afternoon and evening exhibit a comparable AC demand (25-26%). Apartment#3 pre-

sented the most consistent activation frequency, especially during the evening (54%) 

and night (60%). While apartment#1 presents a gradual daily increase, peaking in the 

evening (52%), apartment#2 is the apartment with the lowest activation frequency with 

no time period exceeding 17%. Fig. 2 illustrates the frequency of apartments being 

occupied, according to the time of the day. In general, morning has the lowest occu-

pancy, possibly due to occupants leaving for work/school. Afternoon and evening show 

a moderate occupancy frequency in all apartments. As expected, nighttime is the most 

occupied period, but the frequency may be underestimated, as the PIR sensor only ac-

tivates in the case of users’ movements, thus not registering presence with asleep ten-

ants, leading to lower occupancy counts.  
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Fig. 1. Frequency of AC activation across Apartments and Day Time 

 

Fig. 2. Frequency of occupancy period across Apartments and Day Time 

Table 3 reports the descriptive statistics on indoor and outdoor environmental con-

ditions during the occupancy period, when the air conditioning was off and on, respec-

tively. The analysis highlights differences in environmental conditions with lower in-

door air temperature and humidity and higher outdoor temperature, humidity and solar 

radiation, during periods of AC activation supporting the hypothesis that building over-

heating due to external conditions is a determinant of the decision to turn on the cooling 

system. In addition, CO₂ concentrations were higher when the AC was on, probably 

associated with reduced natural ventilation in the presence of windows closed and/or 

occupants’ smoking activity. 

Table 3. Descriptive statistics of indoor and outdoor conditions during the occupancy period 

Environmental 

Condition Variables 

AC status = 0 

Mean ± sd 

AC status = 1 

Mean ± sd 

T indoor (°C) 27.14 ± 1.07 26.67 ± 1.43 

RH indoor (%) 52.50 ± 6.30 41.27 ± 6.21 

CO2 (ppm) 618.96 ± 367.97 1043.8 ± 556.85 

T outdoor (°C) 25.32 ± 4.84 26.58 ± 5.50 

RH outdoor (%) 63.70 ± 16.25 59.95 ± 18.55 

SolRad (W/m2) 197.88 ± 300.92 269.70 ± 311.34 
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4.2 GLMM selection 

Table 4 shows that Model #2, which includes behavioural and contextual variables, 

outperforms Model #1 in terms of AIC, BIC, and R² metrics (marginal and conditional 

R² > 0.80). ANOVA confirms that adding these domains significantly improves model 

fit (p < 0.05). Furthermore, multicollinearity issues present in Model #1 (e.g., VIF > 5 

for ΔT and outdoor humidity) were reduced in Model #2. 

Table 4. GLMM testing and comparison 

GLMM AIC BIC R2
m, R2

c Chisq(df) p-value 

#1 AC ~ IE + OE 25076 25175 0.65,0.79   

#2 AC ~ IE + OE + OB + C 14996 15139 0.96,0.97 9939(5) < 2e-16 *** 

  

4.3 Insight from the selected GLMM  

Model #2 highlights the importance of accounting for temporal, apartment, and room-

level variability. Daily variability (variance: 1.77±1.33) has the largest effect, followed 

by apartment-level (0.75±0.86), with minimal room-level differences (0.03±0.17).  Ta-

ble 5 reveals that shows that all predictors except solar radiation and wind are signifi-

cant. Occupancy (Std.Coef. = 10.53), outdoor humidity, CO₂, and time of day are the 

strongest positive predictors. Conversely, negative standardized coefficients indicate 

that an increase in air temperature difference, indoor humidity, wind speed, windows 

opening and the time of day (morning) are more likely to reduce the probability of 

turning the AC on, with indoor humidity and temperature having a greater impact (-

2.59 and -1.32).  

Table 5. GLMM results. Statistically significant p-values:  < 0.000 ‘***’, 0.001 ‘**’, 0.01 ‘*’ 

Domains Fixed Effect Std.Coef 95% CI p-value GVIF 

IE ΔT -1.32  [-1.51, -1.14] *** 3.95 

 Co2 concentration 0.48  [0.43, 0.53] *** 1.09 

 Indoor Humidity -2.59  [-2.68, -2.50] *** 1.08 

OE Solar Radiation -0.06  [-0.14, 0.02]  1.99 

 Outdoor Humidity 1.34  [1.16, 1.52] *** 3.64 

 Wind Speed -0.12  [-0.17, -0.07] *** 1.10 

 Fair Wind  0.01  [-0.08, 0.11]  1.01 

OB Window status -0.65  [2.73, 18.34] * 1.06 

C Occupancy 10.53  [ -0.72, -0.59] *** 1.00 

 Day Time_ Morning -0.89  [ -1.03, -0.74] *** 1.34 

 Day Time_Afternoon 0.42  [0.22, 0.63] ***  

 Day Time_Evening 0.44  [ 0.28, 0.59] **  
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The predictors with the strongest positive and negative influence are represented in 

Fig. 3 and Fig. 4, respectively. During occupancy periods, the correlations indicate 

that the probability of occupants activating the cooling systems increases in the pres-

ence of higher outdoor humidity (green curves) and CO2 concentrations, particularly 

during the afternoon and evening. In contrast, during the period with closed windows, 

the lower the indoor humidity (red line), and the lower the indoor air temperature 

compared to the outdoor temperature, the higher the probability of air conditioning 

being active. 

 

Fig. 3. AC status model prediction (0=off, 1=on) in occupancy period with the most relevant 

and positively correlated predictors. Actual ranges of normalized x-axis values: CO2 400-

6458ppm (in case of occupants smoking near sensors); Outdoor Humidity 23-96%.  

 
Fig. 4. AC status model prediction in occupancy period with the most relevant and 

negatively correlated predictors. Actual ranges of normalized x-axis values: ΔT 

13.68-11.89°C; Indoor Humidity 27-72%. 

5 Discussion 

The results confirm expected behavioural patterns: occupancy frequency is closely as-

sociated with AC usage, especially during warmer hours of the day. Apartments #1 and 

#3, which show higher occupancy especially in the evening and night, also present 

higher AC activation rates. Apartment #2, with generally low occupancy, corresponds 

to limited AC use. The higher CO₂ concentration during AC use may indicate a reduc-

tion in natural ventilation, possibly due to closed windows or indoor smoking, 
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suggesting a trade-off between cooling and indoor air quality. In further research, model 

fixed effects will be extended by introducing an additional contextual categorical vari-

able (i.e., Smoking tenants [yes – no]) to better correlate results with occupants’ habits. 

The lower AC usage in the morning could be linked to cooler indoor conditions due to 

nighttime AC use, particularly when outdoor temperatures exceed indoor ones (nega-

tive ΔT). This supports the hypothesis that thermal inertia and nighttime cooling influ-

ence morning behaviour. The model's strong performance after incorporating behav-

ioural and contextual variables confirms the value of multi-domain approaches in ac-

curately predicting occupant behaviour in residential environments. The random effects 

analysis further supports the importance of accounting for temporal and spatial varia-

bility to avoid overgeneralization. Finally, the reduction of multicollinearity in Model 

#2 and the strong explanatory power of occupancy and environmental factors reinforce 

the need for integrating detailed indoor monitoring with behavioural data to develop 

more robust predictive models for cooling demand. 

6 Conclusion 

The outcomes of this paper allow to confirm the hypothesis about the possibility of 

enhancing the predictive performance of occupants’ behavioural models by including 

multi-domain factors, namely physical, behavioural, and contextual variables. In addi-

tion, the proposed GLMM demonstrates the importance of evaluating the influence of 

multi-domain factors on air conditioning use in residential buildings. Indeed, by includ-

ing environmental conditions, behavioural and contextual variables, as well as random 

effects to capture hierarchical structure at apartment and time level, the model provides 

a solid statistical approach for interpreting the complex and multi-dimensional nature 

of human-building interaction. The insights obtained from the selected multi-domain 

occupants' behavioural model serve as the starting point for more advanced behavioural 

modelling. Indeed, GLMM offers valuable insights that can facilitate the selection pro-

cess of relevant features to simplify the application of predictive algorithms in data-

driven approaches, including those using ML techniques for, thus reducing the risk of 

overfitting while accounting for cause-effect relationship. 
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